Corticomuscular Activity Modeling by Combining Partial Least Squares and Canonical Correlation Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticomuscular Activity Modeling by Combining Partial Least Squares and Canonical Correlation Analysis

Corticomuscular activity modeling based on multiple data sets such as electroencephalography (EEG) and electromyography (EMG) signals provides a useful tool for understanding human motor control systems. In this paper, we propose modeling corticomuscular activity by combining partial least squares (PLS) and canonical correlation analysis (CCA).The proposed method takes advantage of both PLS and...

متن کامل

Partial least squares methods: partial least squares correlation and partial least square regression.

Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...

متن کامل

On the Equivalence between Canonical Correlation Analysis and Orthonormalized Partial Least Squares

Canonical correlation analysis (CCA) and partial least squares (PLS) are well-known techniques for feature extraction from two sets of multidimensional variables. The fundamental difference between CCA and PLS is that CCA maximizes the correlation while PLS maximizes the covariance. Although both CCA and PLS have been applied successfully in various applications, the intrinsic relationship betw...

متن کامل

Large Scale Canonical Correlation Analysis with Iterative Least Squares

Canonical Correlation Analysis (CCA) is a widely used statistical tool with both well established theory and favorable performance for a wide range of machine learning problems. However, computing CCA for huge datasets can be very slow since it involves implementing QR decomposition or singular value decomposition of huge matrices. In this paper we introduce L-CCA , a iterative algorithm which ...

متن کامل

Drift Reduction For Metal-Oxide Sensor Arrays Using Canonical Correlation Regression And Partial Least Squares

Abstract. The transient response of metal-oxide sensors exposed to mild odours can be oftentimes highly correlated with the behaviour of the array during the preceding wash and reference cycles. Since wash/reference gases are virtually constant overtime, variations in their transient response can be used to estimate the amount of sensor drift present in each experiment. We perform canonical cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2013

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2013/401976